tirsdag den 28. juni 2016

Uranium Mining: Interview with Dr. Gordon Edwards. Part 1

Anne:  Canada is and always has been one of the biggest producers and exporters of uranium in the world. Nevertheless, three of Canada’s ten provinces have outlawed uranium mining, and health professionals have played an important role in each case. Could you please explain why these medical professionals are opposed to uranium mining?


 

Gordon Edwards: This is a great question. The answer hinges on the remarkable properties of uranium, and the unprecedented nature of the health dangers that it poses. In order to answer the question properly, a good deal of explanation is required.


Tens of thousands of doctors and health professionals in 64 countries belong to IPPNW (International Physicians for the Prevention of Nuclear War), a Nobel-Prize winning organization that has called for the abolition of uranium mining worldwide. All doctors swear an oath that features an admonition to “do no harm.” The medical hazards posed by uranium are extremely long-lived and potentially devastating to the health and safety of humans and the environment now and in the distant future, whereas the benefits of uranium are short-term and obtainable in alternative ways. Thus IPPNW regards the abolition of uranium mining as a medical priority. It is a case of preventative medicine on a global scale.


I am the scientific advisor to PGS, Physicians for Global Survival (the Canadian branch of IPPNW) whose Board of Directors sent me to Greenland to share information about uranium mining. The primary reasons why IPPNW and PGS oppose uranium mining are threefold: 



1. uranium is the key ingredient in nuclear weaponry that threatens the health and the very survival of all humanity; 

2. nuclear reactors fuelled with uranium create the most biologically damaging industrial waste ever produced; 

3. uranium mining leaves behind radioactive residues that will pose a health danger for hundreds of thousands of years.



Uranium had no use prior to the discovery of nuclear fission in 1938-39, at the outset of World War II. The first practical use of uranium was to build atomic bombs that were used to destroy two cities filled with men, women and children. About 200,000 people were killed promptly by the bombs, and many thousands of innocent people died lingering deaths from radiation-induced illnesses many decades later. Canada supplied uranium for the WWII Atomic Bomb Project, and for 20 years afterwards Canada sold large quantities of uranium to help build tens of thousands of nuclear weapons. There were no non-military markets for uranium at the time, and the entire industry was shrouded in Cold War secrecy.


In 1965, Canada declared that its uranium would no longer be sold for bombs, but only as fuel for nuclear reactors. Nuclear reactors can be used for scientific research, to produce electricity, and to produce isotopes for use in medicine and industry. But in 1974, India exploded its first atomic bomb using plutonium from a Canadian nuclear reactor, fuelled by uranium, given to India as a gift. Plutonium is a uranium derivative not found in nature, and all reactors fuelled with uranium produce plutonium as a byproduct. Plutonium is a nuclear explosive material that can be used to build nuclear weapons even thousands of years in the future.


IPPNW was formed in 1980 by a group of Soviet and American doctors to alert political leaders and the general population to the unprecedented threat to human survival posed by nuclear arms. A nuclear war would be a medical disaster of unimaginable proportions – there would be no hospitals, few doctors, and no cure. Medical procedures would be ineffective. By documenting the case for abolishing nuclear arms in stark medical terms, IPPNW won the Nobel Peace Prize in 1985.


By that time the health dangers of nuclear reactors had also become well-known. When uranium is used to fuel a nuclear reactor, hundreds of new radioactive materials are created that are, collectively, millions of times more radioactive than uranium itself. Radioactivity cannot be shut off, so it keeps adding more and more heat even after the reactor is completely shut down. Unless that heat is removed as fast as it is produced, the temperature of the fuel soars higher and higher until it reaches the melting point of 2800 degrees Celsius, leading to the total destruction of the reactor core and massive releases of radioactive poisons from the molten uranium fuel. Such a catastrophic event is called a meltdown.


The first partial meltdown in a power reactor occurred in 1979 at Three Mile Island in Pennsylvania. Complete nuclear meltdowns occurred in 1986 at Chernobyl, in Ukraine, and in 2011 at Fukushima-Daiichi, in Japan. Radioactive materials released from such accidents threaten the health of millions, including the health of future generations. In 1976 a British Royal Commission Report noted that, if nuclear power had been common in Europe before WWII, large parts of Europe would be uninhabitable today because of conventional bombing and wartime sabotage of reactors resulting in multiple uncontained meltdowns.


Even without meltdowns, the potential health hazard from irradiated uranium fuel is unparalleled and extremely long-lived. A single irradiated fuel assembly freshly withdrawn from a reactor will deliver a lethal dose of gamma radiation to a person one metre away in less than a minute. Although the radioactivity diminishes as the years go by, irradiated uranium fuel remains incredibly radiotoxic for tens of millions of years, with a potential to cause billions of cancers and other ailments.


Physicians know that chronic exposure to radioactivity, even at low levels, will cause an increase in the incidence of cancer and inherited diseases.
Such exposure also weakens the immune system that the human body needs to fight infectious diseases. There is as yet no proven safe method for keeping nuclear reactor wastes out of the environment of living things for a period of time exceeding the span of recorded human history. Several attempts in the USA and Germany to bury radioactive waste permanently in underground repositories have failed. Some are questioning the wisdom of abandoning this dangerous material under any circumstances. On medical grounds, IPPNW and PGS oppose the continued mass-production of indestructible man-made radioactive poisons in nuclear reactors.


The dangers of uranium mining became apparent in Canada in the mid 1970s, after some of the military secrecy surrounding this 30-year old industry was lifted.
In 1975 an Ontario inquiry into the health and safety of workers in mines revealed that uranium miners were dying at an alarming rate from radiation-induced lung cancers twenty years or more after their radiation exposures first occurred. In 1978 it was reported that a 55-mile stretch of the Serpent River System, involving 18 lakes, had become a “biological desert” as a result of contamination from uranium mining operations. A hundred million tonnes of sand-like radioactive wastes called “uranium tailings” had accumulated in the Elliot Lake region of Ontario. Over 30 tailings dam failures in that region had dispersed long-lived radioactive poisons and dangerous chemicals into the surface waters.


Uranium is a naturally occurring radioactive heavy metal. It spontaneously produces two dozen other radioactive byproducts, called “uranium progeny”, through the process of radioactive disintegration. Among these are some of the most biologically damaging materials known to science, such as radium, radon gas, and polonium – all discovered less than 120 years ago. Radon gas is the leading cause of lung cancer among non-smokers. Radium exposure has caused bone cancers, head cancers, and fatal blood diseases. Polonium is millions of times more toxic than cyanide, and has been implicated in provoking the vast majority of heart attacks and strokes as well as lung cancers in smokers.


These are all naturally-occurring materials, but uranium mining makes them much more available to the environment of living things, instead of being locked up in hard rock formations. Milling the ore leaves uranium progeny behind in millions of tonnes of finely ground radioactive sand that can be easily blown by the wind, washed by the rain, sifted into the food chain, or employed by ignorant people as construction materials – a practice that has occurred in numerous communities in North America. Port Hope Ontario is the home of the world’s largest uranium conversion facility. In 1975, St. Mary’s elementary school in Port Hope had to be evacuated because of a medical emergency: the radon levels in the school cafeteria were greater than the maximum levels allowed in uranium mines. In addition, hundreds of radioactively contaminated homes in Port Hope had to be destroyed or decontaminated. Today, a two-billion-dollar environmental cleanup is underway in Port Hope involving the recovery of over a million cubic metres of dangerous radioactive material that was dumped in ravines and in the harbor, or used as construction material in homes, schools and roadways. These problems are the direct result of carelessness in managing uranium wastes.


In Canada, there are no uranium mines in agricultural areas.
Most are sited in remote areas, often adjacent to traditional lands of indigenous people. When a uranium mine was proposed in 1979 for the prosperous little town of Clearwater, British Columbia, reaction was swift and overwhelming. Fruitgrowers and local merchants joined environmentalists and scientists in opposing the proposed mine, and the town’s physicians highlighted the medical hazards. The BC government launched a public inquiry into uranium mining. The BC Medical Association assigned two physicians to attend the hearings in order to report on the health aspects of all testimony. The result was a 400-page report entitled The Health Dangers of Uranium Mining, written by Drs. Woollard and Young, published by the BCMA. The report, filled with scientific data, was alarming and hard-hitting, charging that national and international regulatory agencies had systematically disregarded or misrepresented clear scientific evidence of harm. The medical testimony was so shocking that the government abruptly cancelled the Inquiry and declared a seven-year moratorium on uranium mining. Decades later, in 2008, a permanent ban on uranium mining was declared in BC.



In 1982, thousands of kilometres away from BC, medical doctors played a role in bringing abut a moratorium on uranium mining in Nova Scotia.
Ultimately, Nova Scotia passed a 2009 law banning uranium mining altogether and forbidding exploratory mining activities for any mineral if it would disturb a radioactive ore body. The province recognized the logic of leaving all the uranium progeny in the ground rather than bringing them to the surface to plague future generations. Such a policy makes particular sense in a small province like Nova Scotia, where any mine would have to be located close to population centers.



Serious uranium exploration began in Quebec when the 2007 “price bubble” drove uranium prices unrealistically high.
Before that bubble burst and prices plummeted once again, a huge amount of exploration activity took place all over the province, from Cree and Inuit territories in the North, to the Cote Nord and Mont Laurier regions in the South. In December 2008, 31 physicians from the City of Sept-Iles wrote an open letter to the government, saying they would resign their positions at the hospital and leave the community, perhaps even leave the province, unless Quebec declared a moratorium on uranium mining. As doctors, they did not want to have to deal with radiation-induced illnesses that were entirely preventable simply by leaving the radioactive material in the ground. In 2012 a moratorium was declared and the government launched a one-year public hearing into generic issues related to uranium mining. The final report from the hearing was filed in June 2015. It was not supportive of uranium mining. Quebec has now set up an interdepartmental committee to decide on what to do next – to ban uranium completely, or to extend the moratorium.



Saskatchewan is the only Canadian province currently involved in uranium mining.
While improvements have been made in the handling and storing of uranium tailings during the operational phase, such results depend on having a strong, competent, and independent regulatory authority that has the power to implement tough regulations. It must be politically accountable to a vigilant government and a well-informed public. But even under the best circumstances, there comes a time when these voluminous long-lived radioactive wastes will be abandoned. Who then will have the authority, the knowledge, and the resources to safeguard the environment for countless millennia after the mining operations have been terminated and the mining company has moved on or disappeared? The medical hazards will last for hundreds of thousands of years, and will long outlive any government or regulatory agency. Who knows how to keep hundreds of millions of tonnes of radioactive sand out of the environment forever? Eighty-five percent of the radioactivity in the ore body will remain in the uranium wastes, producing vast amounts of radon gas for hundreds of millennia.



There are many ways to generate electricity that do not involve the production of nuclear explosive materials like plutonium,
or long-lived nuclear wastes like irradiated uranium fuel. There are alternative ways of producing isotopes for medical and industrial use that do not require the use of nuclear reactors or uranium. Indeed, the only technology that absolutely requires uranium is the construction of nuclear weapons. Many physicians are opposed to jeopardizing the long-term health of human populations for no essentially good reason.

lørdag den 25. juni 2016

Uranminer, Oprydning og Vildledning





På baggrund af ovennævnte slide henvendte jeg mig i april 2015 til oplægsholderen, der er miljøkemiker og rådgiver for den danske og den grønlandske regering, for at få oplyst hvilke steder der er "ryddet godt op" efter uranminedrift. 

Jeg fik dette svar (se hele svaret nedenfor under 2):

"Et eksempel på en oprydning som lever op til myndigheds krav for canadiske uranminer i nyere tid, (bl.a: http://nuclearsafety.gc.ca/eng/waste/uranium-mines-and-millswaste/index.cfm#Closed er Cluff Lake.
Cluff Lake betragtes som en model for rehabilitering af en mine som er blevet planlagt lige fra starten af mineprojektet. Stedet underkastes jævnlig  mijømonitering for at følge udviklingen i miljøtilstanden."



Jeg har nu haft anledning til at kigge nærmere på Cluff Lake og oprydningen. De informationer, jeg fandt om dekommissionerings projektet af Cluff Lake, bekræfter ikke det svar, jeg fik fra oplægsholderen.

Hvis det ikke er muligt at komme med bedre eksempler på uranmine-oprydning, så må konklusionen blive, at der ikke er ryddet ordentligt op nogen steder efter uranudvinding. Oplægsholderen havde da heller ikke slidet med året efter på uran oplysnings-turen i maj 2015. 


Til gengæld blev der i 2015 vist et foto af Bellezane, en tidligere uranmine i Frankrig, fordi det if. eksperten er "et pænt billede der viser overdækning og re-vegetering af tailings. Jeg har ikke vurderet den kemiske effekt af dette. Billedet er taget her frra:




Mon borgerne i Sydgrønland blev oplyst om de store miljøproblemer ved Bellezane?



Dekommissionering af Cluff Lake


Da Commonwealth of Virginia ville ophæve et uranmine moratorium (midlertidigt forbud), blev der nedsat et udvalg (3), der udgav en rapport i 2012. (4) Forbuddet blev ikke ophævet.






Her er hvad udvalget skrev om Cluff Lake Decommissioning Project (min fremhævning med rød)

pp 185-187: 

BOX 6.1

Cluff Lake Decommissioning Project

"Perhaps the best available data on the environmental effects resulting from a modern uranium mine and processing facility are associated with the former Cluff Lake mine and processing facility, located in the Athabasca Basin of northern Saskatchewan, Canada, that treated high-grade ores ranging from 1 to 30 percent U3O8. Unlike most of the other mining operations that have been discussed in this section, uranium mining and processing at Cluff Lake didn’t begin until the 1980s—an era in which environmental concerns were significantly enhanced and regulations were more stringent than in earlier periods.

Two pits at Cluff Lake (“D” and “Claude”) were mined first, followed by an underground mine (“OP/DP”), followed by three other pits (“DJN,” “DJX,” and “DJ”). All mining and processing at Cluff Lake ceased in 2002 after 22 years of operations, and with 62 million pounds of U3O8 produced. In addition to the mill, operational facilities at Cluff Lakealso included a tailings management area with a two-stage liquid effluent treatment system and surface water diversion ditches, a residential camp area, and various other site infrastructure. Although tailings management and water treatment strategies have improved since the 1980s, the environmental assessment performed as part of the Cluff Lake decommissioning project provides a glimpse of what could occur if a modern uranium mining and processing operation were sited in Virginia.

A Canadian Nuclear Safety Commission (CNSC) environmental assessment to guide the decommissioning work was completed in 2003 (CNSC, 2003), and actual decommissioning was initiated in 2004. CNSC (2003) concluded that the primary environmental effects on completion of the decommissioning would be the migration of contaminants from existing sources (e.g., tailings and waste rock piles) to both groundwater and surface water. Most surface waters in the vicinity of the former mine/mill complex received no direct discharge and therefore were negligibly or only slightly affected by previous operations. Island Lake, however, was adversely affected because of its location immediately downstream of the mill effluent treatment systems. Measured mean annual concentrations of total dissolved solids, sulfate, chloride, uranium, and molybdenum in Island Lake in 2002 were two or three orders of magnitude higher than during the baseline (i.e., pre-mining) monitoring period.

Acid mine drainage (AMD) from the Claude waste rock pile caused contamination of the Claude pit, resulting in greatly elevated levels of sulfate, total dissolved solids, uranium, nickel, arsenic, and radium-226. The relatively poor water quality of the Claude pit necessitated pumping water from the pit to maintain a water level below that of the adjacent lake to prevent transport of contaminants off-site. Groundwater has been similarly affected by AMD from the Claude waste rock, which has formed a shallow, acidic (pH < 4) groundwater plume with elevated levels of dissolved nickel (>10 mg/L) and uranium (>100 mg/L) migrating away from the waste rock pile.

Additional potential environmental hazards at the Cluff Lake site include the flooded mine workings and the tailings management area (Figure 6.1). The flooded underground mines represent a source of groundwater contamination and, if allowed to overflow, a potential surface water contamination source as well. The tailings management area was constructed as an unlined above grade facility, using an earthen dam to retain both solid and liquid tailings and enable chemical treatment of the mill effluent prior to discharge into Snake Creek and Island Lake. The tailings management area represents the principal on-site source of potential long-term environmental effects, although geotechnical evaluations of the earthen dam determined it to be stable, structurally sound, and in compliance with all design specifications. Given its location in a topographic low, constructed surface diversions were employed to isolate the tailings management area from the erosive effects of inflowing surface water.

A variety of mitigation options were considered as part of the environmental assessment process to address the remaining significant environmental issues at Cluff Lake with the explicit goal of minimizing long-term active mitigation activities (e.g., groundwater pumping, water treatment). Preferred mitigation strategies identified included (1) backfilling the pits with waste rock and capping with compacted till, (2) capping the Claude waste rock pile with a dry cover to minimize infiltration and AMD, (3) sealing of surface openings in underground mines to prevent overflows, (4) covering the tailings management area with a secondary layer of till, and (5) allowing natural recovery of Island Lakewater quality. Although these options are likely to mitigate the remaining environmental problems at Cluff Lake to a significant degree, experience has shown that the environmental legacy of uranium mining is persistent over long periods of time. Monitoring and assessment (including a structured follow-up program to evaluate the performance of the mitigation strategies) will play an important role in guiding implementation of any additional mitigation at the site (CNSC, 2003). "

CITAT SLUT

.........................................................................................


Skrevet af Anne



Henvisninger


1) Mail af 30.6.16

Dear Anne Albinus,

Thank you for all your e-mails and especially questions and more, thank you for the link to the US 2012 publication provided in the below e-mail.

The Cluff Lake information included in the US 2012 publication om Cluff Lake Decommissioning Project  is based on the available CNSC report form 2003: CNSC (Canadian Nuclear Safety Commission), 2003. Comprehensive Study Report: Cluff Lake Decommissioning Project. Available at http://ceaa.gc.ca/41B79974-docs/report_e.pdf - the CNSC 2003 is used as a reference in the US 2012 report.

The CNSC 2013 report include available information prior to the site (Cluff Lake) being assessed and licensed for decommissioning, and thus prior to the decommissioning work actually taking place, and the post-decommissioning monitoring results being tabulated.



-        I have attached a 2011 report provided at an international symposium which is a summary of the decomm. work with pictures, and an explanation of the regulatory oversight


More, I sent a request to Canadian regulatory bodies to provide a current (2016) environmental monitoring results report from Cluff Lake, we will get back to you when we get their response

Med venlig hilsen
Gert Asmund og Violeta Hansen

Anne A: 2011 Report vedhæftet ovennævnte mail kan læses her


From: Anne Albinus 
Sent: 25. juni 2016 09:42
To: Gert Asmund; Violeta Hansen
Cc: 

Subject: Vedr. jeres udsagn om Cluff Lake som godt eksempel på oprydning_se venligst_rapport om Cluff Lake dekommissioneringsprojektet


Kære Violeta Hansen og Gert Asmund,

I skrev i en mail (se nedenfor) til mig 14. april 2015:

"Et eksempel på en oprydning som lever op til myndigheds krav for canadiske uranminer i nyere tid, (bl.a:http://nuclearsafety.gc.ca/eng/waste/uranium-mines-and-millswaste/index.cfm#Closed er Cluff Lake.
Cluff Lake betragtes som en model for rehabilitering af en mine som er blevet planlagt lige fra starten af mineprojektet. Stedet underkastes jævnlig  mijømonitering for at følge udviklingen i miljøtilstanden."

Jeg har nu haft anledning til at kigge nærmere på Cluff Lake og sender derfor t.o. informationer om Cluff Lake dekommissionerings projektet, der desværre ikke bekræfter, hvad I skrev til mig.

----------------------------------------------------------------
The Report of the Committee on Uranium Mining in Virginia; 
Committee on Earth Resources; National Research Council,
MEETING 6—JUNE 6-10, 2011 Saskatoon, Canada

The formal invited presenters were:
Hugh B. Miller, Colorado School of Mines
Dirk van Zyl, University of British Columbia
Kevin Scissons, Canadian Nuclear Safety Commission
Gary Delaney, Saskatchewan Geological Survey
Cory Hughes, Saskatchewan Geological Survey
Tim Moulding, Saskatchewan Ministry of Environment
James Keil, Saskatchewan Ministry of Labour Relations and Workplace Safety Radiation
Theresa McClenaghan, Canadian Environmental Law Association
Richard Gladue, AREVA Resources Canada, Inc.


The final report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

Her er hvad udvalget skrev i om Cluff Lake Decommissioning Project 

pp 185-187:

BOX 6.1

Cluff Lake Decommissioning Project

Perhaps the best available data on the environmental effects resulting from a modern uranium mine and processing facility are associated with the former Cluff Lake mine and processing facility, located in the Athabasca Basin of northern Saskatchewan, Canada, that treated high-grade ores ranging from 1 to 30 percent U3O8. Unlike most of the other mining operations that have been discussed in this section, uranium mining and processing at Cluff Lake didn’t begin until the 1980s—an era in which environmental concerns were significantly enhanced and regulations were more stringent than in earlier periods.

Two pits at Cluff Lake (“D” and “Claude”) were mined first, followed by an underground mine (“OP/DP”), followed by three other pits (“DJN,” “DJX,” and “DJ”). All mining and processing at Cluff Lake ceased in 2002 after 22 years of operations, and with 62 million pounds of U3O8 produced. In addition to the mill, operational facilities at Cluff Lakealso included a tailings management area with a two-stage liquid effluent treatment system and surface water diversion ditches, a residential camp area, and various other site infrastructure. Although tailings management and water treatment strategies have improved since the 1980s, the environmental assessment performed as part of the Cluff Lake decommissioning project provides a glimpse of what could occur if a modern uranium mining and processing operation were sited in Virginia.

A Canadian Nuclear Safety Commission (CNSC) environmental assessment to guide the decommissioning work was completed in 2003 (CNSC, 2003), and actual decommissioning was initiated in 2004. CNSC (2003) concluded that the primary environmental effects on completion of the decommissioning would be the migration of contaminants from existing sources (e.g., tailings and waste rock piles) to both groundwater and surface water. Most surface waters in the vicinity of the former mine/mill complex received no direct discharge and therefore were negligibly or only slightly affected by previous operations. Island Lake, however, was adversely affected because of its location immediately downstream of the mill effluent treatment systems. Measured mean annual concentrations of total dissolved solids, sulfate, chloride, uranium, and molybdenum in Island Lake in 2002 were two or three orders of magnitude higher than during the baseline (i.e., pre-mining) monitoring period.

Acid mine drainage (AMD) from the Claude waste rock pile caused contamination of the Claude pit, resulting in greatly elevated levels of sulfate, total dissolved solids, uranium, nickel, arsenic, and radium-226. The relatively poor water quality of the Claude pit necessitated pumping water from the pit to maintain a water level below that of the adjacent lake to prevent transport of contaminants off-site. Groundwater has been similarly affected by AMD from the Claude waste rock, which has formed a shallow, acidic (pH < 4) groundwater plume with elevated levels of dissolved nickel (>10 mg/L) and uranium (>100 mg/L) migrating away from the waste rock pile.

Additional potential environmental hazards at the Cluff Lake site include the flooded mine workings and the tailings management area (Figure 6.1). The flooded underground mines represent a source of groundwater contamination and, if allowed to overflow, a potential surface water contamination source as well. The tailings management area was constructed as an unlined above grade facility, using an earthen dam to retain both solid and liquid tailings and enable chemical treatment of the mill effluent prior to discharge into Snake Creek and Island Lake. The tailings management area represents the principal on-site source of potential long-term environmental effects, although geotechnical evaluations of the earthen dam determined it to be stable, structurally sound, and in compliance with all design specifications. Given its location in a topographic low, constructed surface diversions were employed to isolate the tailings management area from the erosive effects of inflowing surface water.

A variety of mitigation options were considered as part of the environmental assessment process to address the remaining significant environmental issues at Cluff Lake with the explicit goal of minimizing long-term active mitigation activities (e.g., groundwater pumping, water treatment). Preferred mitigation strategies identified included (1) backfilling the pits with waste rock and capping with compacted till, (2) capping the Claude waste rock pile with a dry cover to minimize infiltration and AMD, (3) sealing of surface openings in underground mines to prevent overflows, (4) covering the tailings management area with a secondary layer of till, and (5) allowing natural recovery of Island Lakewater quality. Although these options are likely to mitigate the remaining environmental problems at Cluff Lake to a significant degree, experience has shown that the environmental legacy of uranium mining is persistent over long periods of time. Monitoring and assessment (including a structured follow-up program to evaluate the performance of the mitigation strategies) will play an important role in guiding implementation of any additional mitigation at the site (CNSC, 2003).

.....................................................................................................
National Research Council. Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia. Washington, DC: The National Academies Press, 2012. doi:10.17226/13266.


Venlig hilsen,


Anne Albinus


2) 


---------- Videresendte meddelelser ----------
Fra: Gert Asmund
Dato: 14. april 2015 kl. 14.05
Emne: FW: Forespørgsel vedr. slide i præsentation_kendskab til god uranmine rehabilitation?
Til: "Anne Albinus



Kære Anne Albinus,
Tak for dit spørgsmål om eksempler på uranminer der er blevet nedlukket og rehabiliteret på en ordentlig måde.


Du referer til mit PowerPoint indlæg fra sidste år og til en IAEA rapport nr (IAEA-1630 2014) vedr. ‘environmental remediation’ hvor der i summary står:

“Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards.”

Det er vores indtryk at der er meget stor forskel på hvorledes uran-mineselskaber gennem tiden har ryddet op og efterladt deres mineprojekt. I nogen tilfælde, specielt de uranminer der startede før 1970, må man sige at de har efterladt området i en miljømæssigt helt uacceptabel tilstand. I andre tilfælde, har selskabet, ifølge relevante myndigheders vurdering opfyldt alle gældende forpligtelse og myndighedes krav og har efterladt mineområdet opryddet i en for myndighederne acceptabel tilstand.
Eksempel på oprydning


Et eksempel på en oprydning som lever op til myndigheds krav for canadiske uranminer i nyere tid, (bl.a: http://nuclearsafety.gc.ca/eng/waste/uranium-mines-and-millswaste/index.cfm#Closed er Cluff Lake.
Cluff Lake betragtes som en model for rehabilitering af en mine som er blevet planlagt lige fra starten af mineprojektet. Stedet underkastes jævnlig  mijømonitering for at følge udviklingen i miljøtilstanden.

−        https://www.ceaa-acee.gc.ca/41B79974-docs/report_e.pdf

−        http://www.nuclearsafety.gc.ca/eng/the-commission/pdf/2009-06-10-Decision-AREVA-e-Edocs3405423.pdf

−        http://kiggavik.ca/wp-content/uploads/2013/04/Cluff-Lake-Detailed-Decommissioning-Plan-V2-Feb2009.pdf

−        http://us.areva.com/EN/home-983/areva-resources-canand-activities.html


Med venlig hilsen


Violeta Hansen og Gert Asmund
..........

From: Anne Albinus
Sent: 2. april 2015 06:52
To: Gert Asmund
Subject: Forespørgsel vedr. slide i præsentation_kendskab til god uranmine rehabilitation?

Kære Gert Asmund,
I din præsentation vedr. miljø og uran-minedrift<http://naalakkersuisut.gl/~/media/Nanoq/Files/Publications/Erhverv/uran%20oplysning%202014/DA/6%20Gert%20Uran-miljø-juni%202014-2%20DK.pdf> skriver du i en slide (Fra kampagner mod uranminer) , at "der er blevet ryddet godt op nogen steder".

Jeg er interesseret i at kende til uran-miner, der er blevet godt rehabiliteret, for i IAEA’s viewpoint on uranium mine rehabilitation (IAEA-1630 2014) vedr. ‘environmental remediation’  står der i Summary:

“Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards.”

“It is noted that remediation objectives will ideally be defined a priori, i.e. before the design of any technical solution, and it is crucial to recognize that remediation activities are not just determined by radiological or health risks. In many cases, other factors will prevail in the definition of the adopted strategy, and public perception will always be a key driver.”


Venlig hilsen,

Anne



3/



National Research Council. Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia. Washington, DC: The National Academies Press, 2012. doi:10.17226/13266.





4/ The final report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.


The Report of the Committee on Uranium Mining in Virginia;  
Committee on Earth Resources; National Research Council, 

The formal invited presenters were:

Hugh B. Miller, Colorado School of Mines
Dirk van Zyl, University of British Columbia
Kevin Scissons, Canadian Nuclear Safety Commission
Gary Delaney, Saskatchewan Geological Survey
Cory Hughes, Saskatchewan Geological Survey
Tim Moulding, Saskatchewan Ministry of Environment
James Keil, Saskatchewan Ministry of Labour Relations and Workplace Safety Radiation
Theresa McClenaghan, Canadian Environmental Law Association
Richard Gladue, AREVA Resources Canada, Inc. 

5/ Oplæg IAs Uran Seminar Narsaq 11.6.16



fredag den 24. juni 2016

Dialogmøde om Atomaffald

I forbindelse med GEUS’ arbejde med opstilling af kriterier for lokalisering af et mellemlager har man henvendt sig til Det danske Center for Miljøvurdering (DCEA) for at få hjælp. I den anledning afholder DCEA i dag et dialogmøde for personer, der har vist interesse for og indsigt i processen og borgernes bekymringer.

Det er let at forstå, at GEUS henvender sig til DCEA for at få hjælp. DCEA har fulgt sagen om det radioaktive affald og har offentliggjort en tankevækkende undersøgelse af borgernes bekymringer (se nedenfor).

Der er heller ingen tvivl om, at deltagerne i dialogmødet har meget, de kan bidrage med. Flere kommer fra de kommuner, der i maj 2011 blev udpeget som mulige placeringer af et slutdepot, og som derfor har været tæt på sagen i mere end 5 år. De har med held kæmpet for at få undersøgt mellemlager-løsningen på lige fod med slutdepotet.

Men indstillingen hos det store flertal, når det drejer sig om, hvor atomaffaldet skal placeres, er lige så fuld af mistillid, som da det gjaldt slutdepotet. Den kan opsummeres i det enkle og brutale spørgsmål: Hvem kommer til at sidde med sorteper?

For os, der anser mellemlageret som den bedste løsning, fordi man kan gribe ind, hvis noget er ved at gå galt, er det bittert at måtte se i øjnene, at mistilliden til myndighederne nu er så stor, at den også stiller sig i vejen for en løsning, der er åbenlyst bedre end slutdepotet.

Men det er desværre let at se, hvorfor det er gået sådan: 



  • Man har undladt at give befolkningen upartisk og forståelig information om emnet 
  • Man har ikke bare undladt at inddrage borgerne i processen, men har optrådt på en måde, der er blevet opfattet som arrogant og bedrevidende 
  • Man har lige fra begyndelsen satset på slutdeponering af det radioaktive affald og fortiet, at der fandtes et alternativ 
  • Man har undladt at tage kontakt til folk med praktisk kendskab til langtids-mellemlagring af radioaktivt affald, da denne løsning langt om længe (i marts 2015) blev taget alvorligt og skulle undersøges 

Man har troet, at man kunne lade hånt om borgernes synspunkter og bare tromle sin egen discount-løsning igennem. Derved er mange år blevet spildt med manøvrer, som ikke bare har været resultatløse, men også har undergravet tilliden til myndighederne, når det gjaldt radioaktivt affald.

En virkelig hjælp til GEUS ville være at hjælpe institutionen til at genopbygge borgernes tillid til institutionen. Det er i øvrigt en af anbefalingerne i DCEA’s egen uvildige undersøgelse fra 2014:

”TILLID TIL NATIONALE AKTØRER SKAL GENOPBYGGES”

(se ”Anbefalinger og resultater” nedenfor).

Det vil tage tid, men der er ingen vej udenom. Tillid mellem borgerne og de offentlige myndigheder er en afgørende forudsætning for at finde en holdbar løsning på problemerne med det radioaktive affald.

Skrevet af Jens



Henvisning:

”Potentielt depot for radioaktivt affald – spørgeundersøgelse til borgerne i de berørte områder” (DCEA, Aalborg Universitet, 2014): 


Pressemeddelse: ”Forskere påviser behov for kursskifte i sag om radioaktivt affald”
Anbefalinger og resultater
Baggrundsrapport

Forfattere: Sara Bjørn Aaen, Lone Kørnøv, Sanne Vammen Larsen, Ivar Lyhne og Helle Nielsen. 


torsdag den 23. juni 2016

Den gamle Slutdepotplan. Et Eventyr

Har du hørt historien om den gamle Slutdepotplan? Den er slet ikke så overordentlig morsom, men man kan altid høre den én gang. Det var sådan en skikkelig gammel Slutdepotplan, som i mange år havde gjort tjeneste, men nu måske skulle kasseres. Det var den sidste aften, den lå på hylde i kælderen i Uddannelses- og Forskningsministeriet i Børsgade, og den var til mode ligesom en gammel balletfigurantinde, som danser den sidste aften.  

Slutdepotplanen havde sådan en skræk for den dag i morgen, thi da vidste den, at den skulle på Ministerens bord og synes af ordførerne, om den var brugelig eller ikke brugelig. 




Da ville det blive bestemt, om den skulle sendes ned i den kolde kælder igen eller placeres i Udby i homogene lavpermeable aflejringer. 

Det pinte den, at den ikke vidste, om man beholdt erindringen om den, hvis den kom tilbage i kælderen, at den havde været Slutdepotplanen, den første af sin art i verden til både kort- og langlivet lav- og mellemaktivt affald og omdefineret højaktivt affald samt evigt giftigt affald som bly, beryllium og cadmium, alt gravet ned i ringe dybde med en kort sikkerhedshorisont. Billig - billig! Der var blevet talt meget om den på høringer og i den lokale presse. Den nationale presse turde ikke skrive om den. Den var bange for Hånden

Slutdepotplanen var blevet kritiseret af udenlandske eksperter og nabolande, da den ikke drog omsorg for affaldet, for mennesker og miljø.

Hvorledes det gik eller ikke, Slutdepotplanen ville blive skilt fra Mellemlagerplanen,  som lå ved dens side, hvem den betragtede ganske som sin familie. 

Der gik også andre tanker igennem den; der var så meget, den havde hørt og set, så meget, den havde lyst til, måske lige så meget som Ministeren, men det sagde den ikke, for det var en skikkelig gammel Slutdepotplan, den ville ingen fornærme, allermindst sin øvrighed. Den huskede så meget, og imellem blussede flammen op inde i den, det var som havde den en følelse af: "Ja, man husker også mig! der var nu den smukke Slutdepotplan, - ja, det er mange år siden! Den var så nydeligt skrevet, den sagde 'jeg er den lykkeligste Slutdepotplan! Ingen kan kritisere mig, for jeg er overordnet! Generisk! Det er nemlig endnu ikke bestemt, hvilket affald der skal i mig, det er ikke bestemt i hvilken rækkefølge affaldet skal ned, affaldet er ikke færdigkarakteriseret. Tønder og containere er godkendt til Mellemlager, og DD håber, de godkendes af SIS-manden til Slutdepot. Slutdepotbygningen er tænkt, geologien er tænkt, dybden er tænkt, monitoreringen er tænkt. Jeg er perfekt!"

I det samme kom vinden fra gadehjørnet, den susede gennem en lille rude, der var revnet i kældervinduet, og rev Slutdepotplanen ud af dens tanker. Vinden sagde til Slutdepotplanen: "Hvad er det for noget, jeg hører, vil du bort i morgen? Er det den sidste aften jeg skal træffe dig her? Ja så skal du have en present! nu lufter jeg op i din hjernekasse, så at du klart og tydeligt ikke alene skal kunne huske hvad du har hørt og set, men når der fortælles eller læses noget i din nærværelse, skal du være så klarhovedet, at du også ser det!"

"Ja det er grumme meget!" sagde den gamle Slutdepotplan, "mange tak! bliver jeg bare ikke valgt fra!"  


Mens Slutdepotplanen konverserede med vinden, lå Mellemlagerplanen roligt ved siden af. Den stolede trygt på, at folketingets partier ville pege på den i morgen fremfor at grave affaldet ned, når det if. Geoviden ikke var muligt helt at undgå at lægge et Slutdepot i Danmark i områder med drikkevandsinteresser.


Slutdepotet burde ligge i områder uden drikkevandsinteresser, stod der i hæftet, som overogundergeologenchefkonsulenten-denenestedermåudtalesigtilpressen i GEUS havde glemt på hylden, da han var på besøg i kælderen.

Mellemlagerplanen kunne ikke få ind i sit hoved, hvordan nogen ved deres fulde fem kunne finde på at forurene grundvand, der bruges til drikkevand til befolkningen. Rambøll skrev selv i et NOTAT til Roskilde Kommune, der ikke ville have affaldet, at det er dansk politik, at forurening af grundvand, der bruges til drikkevand til befolkningen mv. ikke må forekomme. 

Mellemlagerplanen havde godt hørt nogen hviske om en cleantechpark fra Risø til Københavns Lufthavn, Europas største, hvorfor affaldet skulle væk fra Risø. Men hvorfor det skulle til Udby forstod Mellemlagerplanen ikke. Den kunne sagtens realiseres i forbindelse med DTU Risø, hos de, der beskæftigede sig med radioaktivitet. 

Næste dag lå så Slutdepotplanen og Mellemlagerplanen og ventede på at komme op til Ministeren. Begge var nervøse. Bladene sitrede lidt. Det var jo rigtignok i en kælder de boede, to alen nede i jorden; der var lidt koldt, men rent og net så her ud; gardiner over de små vinduer, hvor der oppe på karmene stod to underlige urtepotter; matros Christian havde bragt dem hjem fra Ostindien eller Vestindien, det var af lertøj to elefanter, hvis ryg manglede, men i dennes sted blomstrede der ud af jorden, som var lagt deri. På væggen hang billeder af de sundhedsministre, der igennem årene havde haft ansvaret for affaldet. Et bornholmsk ur med tunge blylodder gik "tik! tak!" og altid for gesvindt, men det var bedre end at det skulle gå for langsomt.


Dagen var noget særligt. I udenrigsministeriet var der bestilt to røde fløjlspuder samt to medarbejdere fra Kontoret for Grøn Vækst, der sagde, de i årevis havde slidt med eksportforsøg af det særlige affald. Medarbejderne var "rigtigt" danske, for når udenrigsministeriet sponsorerede fløjspuder, var det vigtig, at um kunne være sikre på, at de der bar puderne nu også var "rigtigt" danske. Slutdepotplanen turde ikke protestere over det vrøvl, for sidst den havde sagt noget, da en medarbejder fra um var tilstede i kælderen, var der blevet sladret opad, og den havde fået en tur på gulvtæppet, så alle siderne røg ud, og de måtte samles op og hæftes på ny.


Kulturministeren havde valgt den sang, der skulle synges, når Slutdepotplanen og Mellemlagerplanen blev båret op til Ministeren: "I Danmark er jeg født der har jeg hjemme", for om nogen var Slutdepotplanen født i Danmark - uden hjælp fra udenlandske eksperter. Kun Studsvik havde hjulpet lidt med forstudiet, men det var en hemmelighed, hvor de havde hjulpet, for i det lille kongerige findes de lykkeligste mennesker i verden, der laver ting i verdensklasse - uden at lytte til indvendinger.


Slutdepotplanen og Mellemlagerplanen lå musestille, selv om det var svært, når det var så koldt i kælderen. De hørte trin komme ned ad stentrappen. Den tunge kælderdør blev åbnet langsomt. Det knagede i hængslerne. Der var ikke råd til at smøre dem. Ministeriet skulle spare. De to medarbejdere fra Kontoret for Grøn Vækst pjattede og talte om, hvor de skulle gå hen og drikke caffe latte, når de havde båret puderne op til Ministeren. De havde aldrig hørt om Slutdepotplanen og Mellemlagerplanen før. Hvordan skulle de også det, når ingen medier talte om dem. De var tilhængere af atomkraft og var ligeglade med atomaffald, der skulle til Udby. 


De drømte om en karriere i um. En af dem havde dummet sig, da han udarbejdede et svar til et grønlandsk folketingsmedlem, men det var hurtigt glemt. Det var ikke hans skyld, at um ikke brugte sagkyndige, men foretrak stud. scient.pol.er til at besvare kernefysiske spørgsmål. 


De hev Slutdepotplanen og Mellemlagerplanen ned fra hylden og sjaskede dem oven på puderne. De gik grinende ud ad kælderen, men tav, da kulturministeren tyssede på dem. Han var dukket op i egenskab af tidligere ansvarlig indenrigs-og sundhedsminister for atomaffaldssagen og ville selv synge for på "I Danmark er jeg født".


Forrest gik de to "rigtigt" danske medarbejdere fra um, så fulgte den syngende Kulturminister efterfulgt af ordførerne. De havde andre ting at tænke på end atomaffaldssagen. Ingen af dem havde vælgere i Udby og var derfor sikre på genvalg, selv om de pegede på Slutdepotplanen. 


Øverst på trappen stod Ministeren for Uddannelse og Forskning og lyste. Hun kunne bringe møgsagen til ophør, så folk igen kunne sælge deres huse alle andre steder end i Udby.  Delegationen gik ind ad døren, der blev lukket langsomt af en sekretær. Ude på gangen kunne man høre de sidste verslinjer:


Du danske, friske strand
med vilde svaners rede,
I grønne ø'r, mit hjertes hjem hernede!
Dig elsker jeg! - Dig elsker jeg!
Danmark, mit fædreland!


Det var eventyret om den gamle Slutdepotplan. Affaldet blev med hjerte dumpet i Udby. Og Mellemlagerplanen? Den blev kastet i papirkurven.


Og hvem er den lykkeligste? Ja, det må du sige, jeg har sagt nok!


Skrevet af Anne


Frit efter H.C.Andersen: Den gamle gadelygte


Andre eventyr om atomaffaldet på Risø